Discrete conformal methods for cortical brain flattening

نویسندگان

  • Monica K. Hurdal
  • Ken Stephenson
چکیده

Locations and patterns of functional brain activity in humans are difficult to compare across subjects because of differences in cortical folding and functional foci are often buried within cortical sulci. Unfolding a cortical surface via flat mapping has become a key method for facilitating the recognition of new structural and functional relationships. Mathematical and other issues involved in flat mapping are the subject of this paper. It is mathematically impossible to flatten curved surfaces without metric and area distortion. Nevertheless, "metric" flattening has flourished based on a variety of computational methods that minimize distortion. However, it is mathematically possible to flatten without any angular distortion--a fact known for 150 years. Computational methods for this "conformal" flattening have only recently emerged. Conformal maps are particularly versatile and are backed by a uniquely rich mathematical theory. This paper presents a tutorial level introduction to the mathematics of conformal mapping and provides both conceptual and practical arguments for its use. Discrete conformal mapping computed via circle packing is a method that has provided the first practical realization of the Riemann Mapping Theorem (RMT). Maps can be displayed in three geometries, manipulated with Möbius transformations to zoom and focus on particular regions of interest, they respect canonical coordinates useful for intersubject registration and are locally Euclidean. The versatility and practical advantages of the circle packing approach are shown by producing conformal flat maps using MRI data of a human cerebral cortex, cerebellum and a specific region of interest (ROI).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cortical Surface Flattening: a Discrete Conformal Approach Using Circle Packings

The locations and patterns of functional brain activity in humans are difficult to compare across subjects because of individual differences in cortical folding and the fact that functional foci are often buried within cortical sulci. Cortical flat mapping is a tool which can address these problems by taking advantage of the two-dimensional sheet topology of the cortical surface. Flat mappings ...

متن کامل

Cortical Surface Flattening: a Quasi-conformal Approach Using Circle Packings

Comparing the location and size of functional brain activity across subjects is difficult due to individual differences in folding patterns and functional foci are often buried within cortical sulci. Cortical flat mapping is a tool which can address these problems by taking advantage of the two-dimensional sheet topology of the cortical surface. Flat mappings of the cortex assist in simplifying...

متن کامل

Cortical cartography using the discrete conformal approach of circle packings.

Cortical flattening algorithms are becoming more widely used to assist in visualizing the convoluted cortical gray matter sheet of the brain. Metric-based approaches are the most common but suffer from high distortions. Conformal, or angle-based algorithms, are supported by a comprehensive mathematical theory. The conformal approach that uses circle packings is versatile in the manipulation and...

متن کامل

Conformal Flattening ITK Filter Release 0

This paper describes the Insight Toolkit (ITK) Conformal Flattening filter: itkConformalFlatteningFilter. This ITK filter is an implementation of a paper by Sigurd Angenent, et al., “On the Laplace-Beltrami Operator and Brain Surface Flattening” [1]. This filter performs an angle preserving map of any genus zero (i.e. no handles) surface to the sphere or, alternatively, to the plane. In this pa...

متن کامل

Computational Conformal Geometry and Its Applications

Conformal geometry has deep roots in pure mathematics. It is the intersection of complex analysis, Riemann surface theory, algebraic geometry, differential geometry and algebraic topology. Computational conformal geometry plays an important role in digital geometry processing. Recently, theory of discrete conformal geometry and algorithms of computational conformal geometry have been developed....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 45 1 Suppl  شماره 

صفحات  -

تاریخ انتشار 2009